|
Simbody
3.4 (development)
|
#include "SimTKcommon/SmallMatrix.h"#include "SimTKcommon/internal/CoordinateAxis.h"#include "SimTKcommon/internal/UnitVec.h"#include "SimTKcommon/internal/Quaternion.h"#include <iosfwd>Go to the source code of this file.
Classes | |
| class | SimTK::Rotation_< P > |
| The Rotation class is a Mat33 that guarantees that the matrix is a legitimate 3x3 array associated with the relative orientation of two right-handed, orthogonal, unit vector bases. More... | |
| class | SimTK::InverseRotation_< P > |
Namespaces | |
| namespace | SimTK |
This is the top-level SimTK namespace into which all SimTK names are placed to avoid collision with other symbols. | |
Typedefs | |
| typedef Rotation_< Real > | SimTK::Rotation |
| typedef Rotation_< float > | SimTK::fRotation |
| typedef Rotation_< double > | SimTK::dRotation |
| typedef InverseRotation_< Real > | SimTK::InverseRotation |
| typedef InverseRotation_< float > | SimTK::fInverseRotation |
| typedef InverseRotation_< double > | SimTK::dInverseRotation |
Enumerations | |
| enum | SimTK::BodyOrSpaceType { SimTK::BodyRotationSequence = 0, SimTK::SpaceRotationSequence = 1 } |
Functions | |
| template<class P > | |
| std::ostream & | SimTK::operator<< (std::ostream &, const Rotation_< P > &) |
| Write a Rotation matrix to an output stream by writing out its underlying Mat33. | |
| template<class P > | |
| std::ostream & | SimTK::operator<< (std::ostream &, const InverseRotation_< P > &) |
| Write an InverseRotation matrix to an output stream by writing out its underlying Mat33. | |
| template<class P , int S> | |
| UnitVec< P, 1 > | SimTK::operator* (const Rotation_< P > &R, const UnitVec< P, S > &v) |
| Rotating a unit vector leaves it unit length, saving us from having to perform an expensive normalization. | |
| template<class P , int S> | |
| UnitRow< P, 1 > | SimTK::operator* (const UnitRow< P, S > &r, const Rotation_< P > &R) |
| Rotating a unit vector leaves it unit length, saving us from having to perform an expensive normalization. | |
| template<class P , int S> | |
| UnitVec< P, 1 > | SimTK::operator* (const InverseRotation_< P > &R, const UnitVec< P, S > &v) |
| Rotating a unit vector leaves it unit length, saving us from having to perform an expensive normalization. | |
| template<class P , int S> | |
| UnitRow< P, 1 > | SimTK::operator* (const UnitRow< P, S > &r, const InverseRotation_< P > &R) |
| Rotating a unit vector leaves it unit length, saving us from having to perform an expensive normalization. | |
| template<class P > | |
| Rotation_< P > | SimTK::operator* (const Rotation_< P > &R1, const Rotation_< P > &R2) |
| Composition of Rotation matrices via operator*. | |
| template<class P > | |
| Rotation_< P > | SimTK::operator* (const Rotation_< P > &R1, const InverseRotation_< P > &R2) |
| Composition of Rotation matrices via operator*. | |
| template<class P > | |
| Rotation_< P > | SimTK::operator* (const InverseRotation_< P > &R1, const Rotation_< P > &R2) |
| Composition of Rotation matrices via operator*. | |
| template<class P > | |
| Rotation_< P > | SimTK::operator* (const InverseRotation_< P > &R1, const InverseRotation_< P > &R2) |
| Composition of Rotation matrices via operator*. | |
| template<class P > | |
| Rotation_< P > | SimTK::operator/ (const Rotation_< P > &R1, const Rotation_< P > &R2) |
| Composition of a Rotation matrix and the inverse of another Rotation via operator/, that is R1/R2 == R1*(~R2). | |
| template<class P > | |
| Rotation_< P > | SimTK::operator/ (const Rotation_< P > &R1, const InverseRotation &R2) |
| Composition of a Rotation matrix and the inverse of another Rotation via operator/, that is R1/R2 == R1*(~R2). | |
| template<class P > | |
| Rotation_< P > | SimTK::operator/ (const InverseRotation_< P > &R1, const Rotation_< P > &R2) |
| Composition of a Rotation matrix and the inverse of another Rotation via operator/, that is R1/R2 == R1*(~R2). | |
| template<class P > | |
| Rotation_< P > | SimTK::operator/ (const InverseRotation_< P > &R1, const InverseRotation_< P > &R2) |
| Composition of a Rotation matrix and the inverse of another Rotation via operator/, that is R1/R2 == R1*(~R2). | |